TABLE OF CONTENTS

PREFACE ..2
1.0. INTRODUCTION ...3
1.1. What are Farmer Field Schools?3
1.2. Why FFS? ...3
2.0. ESSENTIAL ELEMENTS OF FFS3
2.1. The group ...3
2.2. The Field ...3
2.3. The Facilitator ..3
2.4. The curriculum ..3
2.5. Programme leader ..4
2.6. Financing ...4
3.0. CHARACTERISTICS OF THE FARMER FIELD
 SCHOOL APPROACH ...4
3.1. Farmers ...4
3.2. The field ...4
3.3. Extension workers ...5
3.4. The curriculum ..5
3.5. Training ...5
3.6. Meetings ...5
3.7. Learning Materials ..5
3.8. Group Dynamics ...6
4.0. STEPS IN CONDUCTING FFS6
5.0. KEY CONCEPTS AND TECHNIQUES USED
 IN FFS ...7
5.1. Ecosystem ...8
5.2. The Concept of What is This? What is That? ...8
5.3. Agro Eco System Analysis (AESA)8
5.4. Participatory Technology Development (PTD)8
5.5. Establishing PTD in FFS sites9
5.6. Village immersion (do it yourself)10
Case Study of PTD Development:
 Eotulo Farmers’ Group, Meru District, Tanzania12

PREFACE

There are several initiatives in Eastern Africa to promote sustainable agriculture practices as environment-friendly and alternative to conventional agriculture. However, little has been done to document the good agricultural practices or even lessons learnt from these initiatives. Farmers today still lack access to information on sustainable agriculture practices. Sustainable agriculture seeks an environmentally sound, socially equitable and economically viable ways to produce to meet the needs of the present without compromising those of future generations.

SUSTAINET EA as a regional Network operating in Eastern Africa endeavours to bridge the information gap on Sustainable Agriculture to reach smallholder farmers through publication of simplified technical manuals on good agricultural practices. These manuals contain useful technical information on good agricultural practices that offer practical answers to questions normally asked by farmers of what, why, how. The manuals’ focuses are on:

1. Agroforestry practices
2. Dairy Goat Improvements
3. Soil and Water Conservation
4. Conservation Agriculture
5. Nine-seeded Hole
6. Integrated Agriculture System
7. Organic pineapple production
8. Certification of organic products
9. Groundnut Production
10. Farmer Field School.

This manual is part of SUSTAINET’s effort to promote sustainable agriculture in the region. It is developed to reflect the experiences and views sustainable agriculture practitioners (farmers, researchers, member organizations and institutions of higher learning).

This manual is intended primarily for farmers and field extension service providers. It is written in simple English language with illustrations, and easy to understand.

The process of documenting and publishing the manuals was supported by funding from GTZ. We thank our member organizations and collaborators for their useful contributions to the manuals’ development.

This manual was prepared from good agricultural practices (GAPs) documented and published in 2006. The process was participatory and interactive among the key stakeholders. This interactive process culminated into a writeshop that was held in Naivasha. The writeshop process was facilitated by Chancery Media.

The writeshop began with presentation of the GAPs by the facilitators. The participants included extension staff from various organizations in East Africa, ACT and SUSTAINET staff, research scientists from Nairobi and Sokoine universities, and artists. The participants were divided into groups to discuss the GAPs and develop them into manuals. This was followed by plenary presentations where participants gave positive critiques. Another groups’ discussion to include comments from the participants were held, followed with plenary presentations. Chancery Media then refined the language and presentations.
1.0. INTRODUCTION

1.1 What are Farmer Field Schools?
- Farmer Field Schools (FFS) consist of groups of farmers who get together to study a particular topic.
- The topics covered can vary from conservation agriculture, organic agriculture, animal husbandry, and soil husbandry, to income-generating activities such as handicrafts.
- FFS provide opportunities for learning by doing. It teaches basic agricultural and management skills that make farmers experts in their own farms.
- FFS is a forum where farmers and trainers debate observations, experiences and present new information from outside the community.

1.2 -Why FFS?
- Empowering farmers with knowledge and skills
- Making farmers experts in their own fields.
- Sharpening the farmers’ ability to make critical and informed decisions.
- Sensitizing farmers in new ways of thinking and problem solving
- Helping farmers learn how to organize themselves and their communities.

2.0 ESSENTIAL ELEMENTS OF FFS

2.1 The group
of people (20-25 in number) who have a common interest, forms the core of a Farmer Field School. The FFS tends to strengthen existing groups or may lead to the formation of new groups

2.2 The Field
is the teacher. It provides most of the training materials like plants, pests and other facilities. In most cases, communities provide a study site with a shaded area for follow-up discussions.

2.3 The Facilitator
is technically competent to lead members through the hands-on exercises. The facilitator can be an extension agent or a Farmer Field School graduate.

2.4 The curriculum
follows the natural cycle of the subject, be it crop, animal, soil, or handicrafts. This allows all aspects of the subject to be covered in parallel with what is happening in the FFS field.
2.5 Programme leader

the programme leader is essential to support the training of facilitators, get materials organized for the field, solve problems in participatory ways, and nurture facilitators. The programme leader should be a good leader who empowers others.

2.6 Financing

is an important element since Farmer Field Schools can be expensive or low-cost depending on who implements them and how they are conducted.

3.0 CHARACTERISTICS OF THE FARMER FIELD SCHOOL APPROACH

3.1 Farmers

are experts conducting their own field studies. Training is based on comparison that they conduct.

3.2 The field

is the learning place where farmers working in small groups collect data, analyze and make decisions based on their analyses then present the decisions to other farmers for refinement.
3.3 Extension workers
are facilitators not teachers. Once the farmers know
what to do the extension workers takes a back seat
only offering guidance when need be.

3.4 The curriculum
is integrated to include crop husbandry, animal
husbandry, land husbandry and other areas in
relation to ecology, economics, sociology and
education.

3.5 Training
is related to the seasonal cycle of the practice being
investigated such as land preparation, cropping,
harvesting, livestock feeds and so on.

3.6 Meetings
are held at regular intervals depending on what
activities need to be done.

3.7 Learning Materials
are generated by farmers and are consistent with
local conditions. Even illiterate farmers can prepare
and fuse simple diagrams to illustrate the points
they want to make.
3.8 Group Dynamics.

Training includes communication skills building, problem solving and leadership and discussion methods. Farmers implement their own decisions in their own fields.
4.0 STEPS IN CONDUCTING FFS

Ground working activities
- Identify priority problems
- Identify solutions to identified problems
- Establish farmers’ practices
- Identify field school participants
- Identify field school sites

Training of facilitators on:
Crop/livestock production and protection technologies; message delivery mechanisms using non-formal education methods (NFE); participatory technology development (PTD) with emphasis on the approaches and developing guidelines on conducting PTD; non-formal education methods with emphasis on what, when and how to use NFE in FFS; Group dynamics; special topics to be addressed at every stage of training.

Establishment and running FFS
With the guidance of facilitators, the group meets regularly throughout the season and
- Identify PTDs
- Carries out experiments and field trials related to the selected enterprise
- Implement PTDs (Test and validate)
- Conduct AESA and Morphology and collect data
- Process and present the data
- Group dynamics

Field Days
During the period of running the FFS, 1-2 field days are organized where the rest of the farming community is invited to share what the group has learned in the FSS. Farmers themselves facilitate during this day

Evaluating PTDs
Analyse collected data
- Interpret
- Economic analysis
- Presentation

Graduations
This marks the end of the season-long FFS. It is organized by the farmers, facilitators and the coordinating office. Farmers are awarded certificates.

Farmer run FFS
FFS farmer graduates now have the knowledge and confidence to run their own FFS.

Follow up by facilitators
The core facilitators backstop on-going farmer run FFS
5.0 KEY CONCEPTS AND TECHNIQUES USED IN FFS

5.1 Ecosystem
This entails both living and non-living things found in an area and the environment they are in. The activity helps in identifying the functions of the organisms found in the ecosystem and how they interact with each other.

5.2 The Concept of What is This? What is That?
It is a discovery-based learning in which questions are used to answer questions.

It leads the learner to the answer by asking questions. The purposes of this concept are:

- to promote learning by discovery and lead learners towards their own analysis
- to guide farmers to critically analyze and make better decisions on their own fields.

The idea is promote learning by discovery and to lead the person toward his or her own analysis.

5.3 Agro Eco Sytem Analysis (AESA)
Making the group management decision

Purposes of AESA are:
- Promote learning by discovery and learners towards their own analysis.
- Guide farmers to critically analyze and make better decisions on their own fields.

Why AESA?
- It improves decision-making skills, through a field situation analysis by observing, drawing and discussing.
- improves decision-making skills by presenting small group decisions for critique in the large group
Name of farmer field school:
- AESA No.
- Group No.
- Plot No.
- Problem addressed:

<table>
<thead>
<tr>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week No.</td>
</tr>
</tbody>
</table>

General information
- Variety:
- Date planted:
- Age of crop:
- Spacing:
- Fertilizer:
- Weather:
- Time of observation:
- Plant population
- Germination %

Measurement
- Length of leaves:
- Width of leaves:
- No. of leaves:
- No. of diseased leaves:
- No. of dead leaves:
- Length of plant:
- No. of pods:

Treatment
- Treatment schedule:
- Management practices:

Insect pests
- Pests seen:

Plant drawing

Natural enemies
- Natural enemies seen:

Observations
- Soil moisture:
- Diseases:
- Insect pests:
- Plant health:
- Deficiency:
- Weeds:
- Predators:

Recommendations
- What management practices should be applied?

5.4 Participatory Technology Development (PTD)
This is a process of collective inquiry with the purpose of initiating community action on solving local problems.

PTD in farmer field schools empowers participants with analytical skills to investigate problems in farming practices in three ways:

a) It empowers because of the specific insight, new understandings and new possibilities that participants discover in creating better explanations about their social world

b) Participants learn how to learn

c) It liberates when participants learn how to create new possibilities for action.

5.5 establishing PTD in FFS sites
To conduct PTD, seven (7) important steps are followed:

Step 1: Conduct Ground-working activities

The participants introduce themselves and the programme to build up a good relationship. In the process ideas about the attitudes, values and norms of the people in the community can also be shared during this stage.

Step 2: Conduct village immersion activities

The participants are immersed in the village identified as possible FFS sites. Participants validate local field problems and current farming practices gathered during Ground-working activities.

Step 3: Prioritizing field problems

A baseline survey tool is utilized to obtain more specific details of the field problems in the proposed FFS sites. Field problems are then prioritized.
Step 4: Plan and design PTD activities
After prioritizing field problems, the planning and designing of PTD activities commence. The participants identify which PTD activities will be set up.

Step 5: Implement PTD activities
Participants should jointly evaluate all activities. The participants and facilitators should agree upon the decision as to what PTD activities should be set up in the FFS sites.

Step 6: Collect and interpret result of PTD activities
Participants should be able to collect and interpret PTD results. This helps the participants to develop innovations or discover technology gaps or new problems for consideration in succeeding PTD activities.

Step 7: Utilize result in succeeding PTD activities
PTD results should be continuously utilized and innovations developed in conducting PTD activities should be utilized in addressing similar field problems in future.

5.6 VILLAGE IMMERSION (DO IT YOURSELF)
5.6.1 Purposes of village immersion are to:
- Acquaint with the area know and be known
- Make farm and home visits
- Verify the baseline data collected during group working
- Pay courtesy call to the village elders
- Develop or verify the village map
- Identify/appreciate the resources within the village
- Help to understand the cultural norms/social practices within the area.

5.6.2 Methods:
- By using a village guide map
- Village guides or contact person
<table>
<thead>
<tr>
<th></th>
<th>Name, Designation and Organisation</th>
<th>E-Mail and telephone contacts</th>
</tr>
</thead>
</table>
| 1 | Alfred Ombati
Artist / Designer, Skyward Design and Marketing Ltd. | aholiabsart@yahoo.com
+254 723 350 628 + 254 20 316912 |
| 2 | Ayub Gitau
Senior Lecturer, University Of Nairobi | gitauan@uonbi.ac.ke, gitauan@yahoo.co.uk
+254 722878029, + 254 318262 Ext 452 |
| 3 | David Dodova
Teacher and Translator, Alliance Francaise, Nairobi and Language Solution Business Center | mudhoy@yahoo.com
+254 0726667804, 0734677712, 0721162728 |
| 4 | David Kangangi Njoka
Disaster Risk Reduction/Small Programmes Coordinator.
CCSMKE, Kerugoya, Kenya | kangangi_d@yahoo.com
+254 720735449, +254 733965702 |
| 5 | Francis Njange
Head of Education and Training Dept. Molo, Kenya | training@sustainableag.org, francis.njange@gmail.com
+254 7257777421, +254 20 418717 |
| 6 | Hellen Bradburn
Programs Coordinator,
Arusha, Tanzania | wadec@habari.tz, helenbiseko@yahoo.com
+255 754621020 +255 787621020 |
| 7 | Jacinta Murunga
Student, University of Bonn-Germany | s7jamuru@uni-bonn.de, j_murunga@yahoo.co.uk
+254 718220529, +49 15201484918 |
| 8 | Karani Sekiete
Programme Co-ordinator, Moshi, Tanzania | sekiete@hotmail.com
+255 754695191 +255 27 2752765 |
| 9 | Lucy Stephen Mvungi
Principal Agricultural Field Officer | lucymvungi@gmail.com
+255 784654968, +255 655654968 |
| 10 | Mary Mate
Programme Co-ordinator, Diocese of Embu-IRDP, Embu, Kenya | marymate06@yahoo.com, doelrdp@salpha.co.ke
+254 721535413, +254 68 31415, +254 31638, +254 31540 |
| 11 | Mathias Miburo
Teacher, Mparamirundi, Burundi | capadshirukubute@yahoo.fr
+257 79117741, +257 22217902, |
| 12 | Nganga Kihupi
Associate Professor, Sokoine University of Agriculture,
Morogoro, Tanzania | nikhupi@yahoo.com
+255 32 604216, +255 7867963 |
| 13 | Nyotumba Bonaventure
Artist / Graphic Designer, Skyward Design and Marketing Ltd | nyotsz@yahoo.com
+254 20 316912, +254 723 66 77 88 |
| 14 | Patrick Rukwaro
Media Consultant | pnrukwaro@yahoo.com, rukwaro@chancerymedia.com
+254 20 2508492, 712-373737 |
| 15 | Philip Omuga
Programme Co-ordinator AEP, Homa Bay, Kenya | philipomuga@yahoo.com, dids.homabay@yahoo.com
+254 59 22098 +254 59 22624, +254 72095013 |
| 16 | Stephen Kileo
Programme Co-ordinator, Chema, Karagwe, Tanzania | chema@sationet.net
+255 28 2223226, + 255 754 756429, +255 2223226 |
| 17 | Tom Apina
Executive Secretary, SUSTAINET EA, Nairobi Kenya | tom.apina@sustainetea.org
+254 20 4444252, +254 0722940789 |
| 18 | Richard Apamo
Consultant, SUSTAINET EA, Nairobi Kenya | richard.apamo@sustainetea.org, r_apamo@yahoo.com
+254 725 527207 |
Case Study of PTD Development: Eotulo Farmers’ Group, Meru District, Tanzania.

The Eotulelo group had several questions: should they plough as usual, use a ripper before planting, or plant without using a ripper? And would it be better to plant lablab (Lablab purpureum, a type of legume) or pigeonpeas in between the rows of maize? They rented an acre (0.4 ha) of land to use as their field school site. They divided the field into five plots, each with a different combination of techniques:

- **Ripped plot, planted with maize intercropped with lablab.** At the end of the season, this plot yielded 58 kg of maize, and no lablab because of drought.
- **Direct planting without ripping plot, maize intercropped with lablab** (yield: 40 kg of maize, no lablab because of drought).
- **Ripped plot, planted with maize intercropped with pigeonpeas** (yield: 35 kg; no pigeonpeas because of drought).
- **Direct planting without ripping plot, maize intercropped with pigeonpeas** (yield: 15 kg maize, pigeonpeas dried and were not harvested).
- **Farmer’s normal practice: ploughing twice, then planting maize intercropped with beans, pigeonpeas and pumpkins** (yield: 12 kg maize, pigeonpeas not harvested).